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ABSTRACT
A concise technical overview of some of the key'landmark' developments in self-

tuning control (STC) is presented. The notion of two coupled sub-algorithms forming the

basis of STC together with enhancements to produce adaptive on-line procedures is discussed

as well as the potential limitations of such schemes. The techniques covered include optimal

minimum vaiance, sub-optimal pole-placement and long range model-based predictive

control. Based on the experiences of the authors in the industrial application of STC,

extensions of the standard linear model-based approaches to encompass a class of bilinear

model-based schemes, is proposed. Some on-going developments and future research

directions in STC for bilinear systems are highlighted. These include the requirements for

combined algorithms for control and fault diagnosis and the need for models of differing

complexities.

INTRODUCTION

The general aim of the chapter is to provide the reader with an overview of some of

the key developments in the field of linear model-based STC. It also includes an introduction

to some of the definitions that allow the classification of the resulting STC forms. The

definition of STC as being one form of adaptive control which requires two coupled sub-



algorithms, one for on-line estimation of a discrete-time mathematical model of a plant and

the other for control law design and implementation, is presented. The notion of repeatedly

updating the model parameters via recursive estimation is introduced. Whilst reference is

made to authoritative texts on the subject, a brief review of recursive least squares and

Kalman filtering is given, together with extensions to enhance the adaptivity of the schemes.

Then, three main categorisations of control law design are considered in the order of their

historical development, namely: optimal d-step ahead control strategies (where d is defined

later), sub-optimal pole-placement control strategies and long range model-based predictive

control. The above developments are based on assuming a linear model representation for the

system to be controlled. Various extensions and refinements have been proposed, and the

chapter wiJll provide the details of some of these developments, particularly those of the

authors and their colleagues.

In particular, research conducted by the first author has shown that it is often found

that the on-line parameter estimation algorithms can produce wildly varying estimations in

cases when STC is applied to nonlinear systems. In such cases, the self-tuning principle may

become violated, and an extension of the above STC strategies to deal with a class of bilinear

systems has been considered. Adopting such a bilinear model representation potentially

allows STC to be applied to a wider range of systems for which the notion of linearisation at

a point is replaced by that of bilinearisation over a range. A review of some the more recent

developments in the area of STC assuming a bilinear model representation is therefore

included. Finally, a section containing concluding remarks is given which resumes the overall

coverage of the chapter.

A discussion on future open research directions in which the notion of a combined

approach for realising control and fault diagnosis and the need for different model

complexities is presented in a section on additional reading.



BACKGROUND _ TECIINICAL REVIEW OF SELF-TUNING CONTROL

This chapter on'Self-tuning Control Systems: A Review of Developments'aims to

inform the reader of the major developments and historical landmarks in the topic up to the

present day. The earliest reference dates back to the first International Symposium on Self-

Adaptive Flight Control in 1959 which was held at what is now the Wright-Patterson Air

Force Base, Dayton, Ohio, USA (Gregory, 1959), where the concept of 'self learning' control

was first proposed. However, due to the lack of available technology atthattime, in terms of

reliable computer hardware and software, it was a decade before this concept was to re-

emerge. In fact it re-emerged under the name of self-tuning control (STC) in the 1970s and

was notably driven in those earlier years by Kalman (1960), Peterka (1970), and Astrom and

Wittenmark (1973), who are now recognized as the early pioneers in this field. The major

breakthrough by Astrom and Wittenmark(L973) with the optimal d-step ahead minimum

variance (MV) self-tuning regulator/controller (STRySTC in which convergence was proved

for the simplest case was perhaps the first landmark which led to a positive resurgence and

increased interest in the subject. This was followed in 1975 by the development due to Clarke

and Gawthrop (1975) with the generalised minimum variance (GMV) STC in which

constraints on control effort could be implemented to achieve arealizable control system.

This led naturally to the incremental forms of MV and GMV STC, in which inherent integral

action is automaticallv achieved.

The reader will be reminded that amodel is only an approximation, however

sophisticated it may appear, and that all models are developed and used for purpose and

convenience. In fact, the notion of 'models for purpose' will feature as an underlying thread

throughout the chapter, with models for the purpose of control being necessarily simpler in



strucfure than some of their counterparts, e.g. those for fault diagnosis. The above MV and

GMV schemes belong to a family of control systems which can be described as Linear

Quadratic Gaussian (LQG) since the assumed plant model is linear, the cost function to be

minimized is quadratic and the noise affecting the output of system is assumed to be

Gaussian. The resulting MV and GMV controllers were developed initially for the auto-

regressive with exogenous inputs (ARX) model representations and subsequently extended to

the auto-regressive moving average with exogenous inputs (ARMAX) case. The development

of the incremental forms led to proposals which made use of ARIMAX model

representations, in which the assumed noise model is modified. It should be noted that model

structures are normally adopted for convenience and the models commonly used in STC are

outlined in the Section on STC Model Structures.The MV and GMV STR/C strategies are

also known, as stated earlier, as optimal d-step ahead predictive schemes, since it is possible

to predict the output d-steps ahead with knowledge of the system input at the current time

step. Indeed, this forms the basis of the schemes, since knowing the desired output allows a

quadratic cost function to be minimised in order to determine the optimal input.

Unfortunately, however, to achieve this goal the resulting optimal STC cancels the process

zeros, consequently rendering these approaches inadequate when dealing with non-minimum

phase (NMP) systems.

Recognition of the shortfalls of the d-step ahead optimal schemes led to another

landmark, namely the proposal for sub-optimal pole-placement STC strategies. These

schemes are able to achieve their goals without affecting or utilizing the process zeros. Such a

scheme was proposed by Wellstead et al. (1979), and developed within the ARX and

ARMAX framework. The resulting controllers were demonstrated to be able to overcome the

implementational problems with NMP systems, as experienced by the optimal schemes. The

development led to alternative forms, and the state-space pole-placement STC was



subsequently proposed by Warwick (1981). This made use of the so-called implicit delay

observable canonical form within an innovations state-space setting. Whilst both control

strategies are identical in the absence of output measurement noise, they differ in their

behaviour in the presence of noise: the latter being due to the increased degree of filtering

through the state space model structure. An interesting observation in the state-space

equivalent of the ARX model is that the steady-state Kalman filter (SKF) used within the

state-variable feedback (SVF) control law, is that the SKF converges to the true states in n-

steps, with n being the order of the system. In the case of the equivalent ARMAX model,

convergence is dependent on the locations of the zeros of the noise colouring polynomial.

Perhaps the most significant landmark in the development of control law design

procedures to date has been that of long range (i.e. greater than d-steps ahead) model-based

predictive control. Such an approach was proposed by Clarke et al. (1987). This approach

differs from the previous proposals in that the controller not only utilises the actual measured

signals, but it also utilises future predicted signals, based on knowledge of the set point in

advance. The approach developed in (Clarke et al., 1987) is known as generalised predictive

control (GPC) and this is formulated in the incremental control framework, i.e. it utilises the

ARIMAX model structure. The basis of the approach is to assume that no further action in

terms of incremental controls will take place so that the future control remains constant up to

a user defined prediction horizon h-steps ahead (where h is greater than d). By separating the

contributions to the fufure outputs which can be accounted for at the current time, due to

current at previous controls, allows a deficit to be predicted, which is essentially the predicted

future error that would appear if no adjustment to the control action is made. Then, by

representing these future predicted effors in vector form, it is possible to design a suitable

quadratic cost function, the minimisation of which will yield a vector of optimal future

incremental controls. At each time step the procedure is repeated, thus leading to the notion



of a receding horizon approach. Details regarding these key developments of the control law

design procedures are provided in the Section on Control Law Design Procedures.

This historical-technical review will also consider the development of on-line

parameter estimation algorithms for use in STC. Whilst only outlined briefly here, the

developments are fully supported by reference material to the original works, where the

reader can find detailed derivations. For example the reader will find the original

development of the recursive least squares (RLS) algorithm of Plackett (1950), extensions to

include extended least squares (ELS), use of forgetting factors and variable forms of

forgetting (e.g. due to Fortescue et al. (1981)) to be of value. Utilisation of the Kalman filter

(KF) for parameter estimation (following a brief review of its original development for linear

state estimation, (Kalman, 1960)) is presented. Whilst the use of coupled KFs for joint state

and parameter estimation will be briefly discussed, as well as the extended KF (EKF), e.g.

(Young, 1974), for simultaneous state and parameter estimation, a detailed discussion is not

given here. In parallel with developments in computer technology, the middle 1980s

witnessed some important developments and enhancements in regard to the estimation

algorithms used in STC. For example, for the first time it became possible to make repeated

on-line use of forgetting factors (leading to variable forgetting factors), covariance matrix

resetting techniques and the realisation of methods based on instrumental variables (Young,

1984). Aspects regarding the developments of the on-line parameter estimation algorithms

are provided in the Section on Parameter Estimation Procedures.

SELF.TUNING CONTROL CONCEPT

Essentially a STC comprises two coupled subalgorithmso one for the online estimation

of the parameters of an assumed model and the other for evaluating the control action from a

suitable control law design procedure. In principle any estimation algorithm can be combined



with any control law design algorithm, thus the scope is wide and the final choice of this

combination will depend on the particular application. In the following, the estimation and

conhol law design algorithms will be introduced separately. Later, in the simulation study in

the Section on Bilinear GPC the algorithms are combined when a self-tunine linear GpC

scheme is applied to a nonlinear system.

In order to fully exploit the STC concept the models upon which the model-based

controllers are based are required to be repeatedly updated as the system is driven over the

operational range of interest. If the operating range is small then a local linear model with

fixed parameters may be sufficient. If, however, the operational range is increased the

assumptions on local linearity for the system to be controlled may become violated. Under

such conditions the overall closed-loop performance will become reduced due to the increase

in the mismatch between the system and model. Alternative approaches using controller gain

scheduling, look-up tables as well as multiple switched/blended model solutions have been

considered. I{owever, the notion of STC whereby the model parameters are continually

updated, as the operating range is traversed, is in effect an infinite model approach, with the

advantage that as the system and/or subsystem components change over time, then so do the

resulting models. This repeated updating of the model parameters exploites the notion of

certainty equivalence in that the estimated values are at each time step assumed to be correct.

Taking the approach one step further, it may also be possible, using the same measured

input/output data, to detect the onset of a fault condition. Such a concept enables to the

establishment of thresholds within which non-violation of certain inequalities allows the

implementation of adaptive control via STC, and conversely would allow either a fault

detection, or an active fault tolerant control scheme to be triggered. Whilst it is possible, in

principle, to combine any model-based control law design procedure with any suitable

estimation algorithm, there are certain classifications of STC. The first is to consider the



indirect (or explicit) and direct (or implicit) STC schemes. In an indirect direct approach, or

explicit scheme, the control law is obtained from the estimated model parameters; the latter

are explicitly available for interrogation/monitoring, thus allowing some degree of

intervention between the two coupled algorithms. In the direct approach, on the other hand,

the control law is direclty estimated from the input/output data along with the estimated

model parameters; the latter being implicit within the scheme (i.e. not explicitly available). A

further classification which, is possible in the case of both direct and indirect STC schemes is

to make the distinction between non-dual and dual STC. In a non-dual STC the control action

is required to perform the role of an ideal control signal only, whereas in the dual approach

the control action is not only ideal for control, but is also an ideal signal from an estimation

view point" In the remainder of the work is this chapter consideration is given to an explicit

non-dual STC. In other words the control action is ideal for control only and the parameters

are explicitly available from the estimation algorithm. It is also worth noting in the context of

a linear STC applied to nonlinear systems that the selttuning principle, which holds when

estimated model parameters converge to steady values, may become invalidated. Thus further

justifing a nonlinear, restricted here to bilinear, STC approach. A block diagram

representation of a general explicit non-dual STC scheme is given in Figure 1.



Figure 1. Block diagram representation of an explicit non-dual src, where
u(t), y(t), r(t), 4 and 0 are defined tater.

Controller

STC MODEL STRUCTURES
A widely used and relatively simple model is the so-called ARX (auto regressive with

exogenous inputs) model, where the additive disturbance on the output is assumed to be a

white signal having zero mean value. An extension of this model structure is the so-called

ARMAX (auto regressive moving average with exogenous inputs) model strucfure, where the

noise is no longer assumed to be white, but is modelled as the output of a moving avorage

process. A further extension is the ARIMAX (auto regressive integrated moving average with

exogenous inputs) model. In order to proceed, the various model structures are briefly

introduced. The ARMA)VARIMAX model structure can be expressed in the form

Parameter
estimation
algorithrn

Control law design
algorithm

A(q')y(t): q-d B(q-,)u(t)+ ((t) (0.1)



where q-' denotes the backward shift operator defined such that q-, y(t): y(t _i) and r is

the discrete-time index. When dealing with discrete time control it is normal to assume the

existence of a zero-order-hold in the input channels, such that d ) 1 represents the integer

valued quantity D /r" rounded LLp; D being the system time delay and r, the adopted

sampling interval' As such, d is regarded as the nonnalised system time delay. The sampled

discrete-time system output and input signals at time t arc denoted, y(t) and, u(t),

respectively, and the polynomials A(q-') and B(q-.) are def,rned as

A ( q t ) :  d o * 4 Q - ' * o r q t  * . . . t a , , o q  
n o ,  

o o : I ,

B(qt) : b, +brq-| *bret +... + b,,uq nt, 
bo + 0 .

In STC the model parameter vector, denoted

(0.2)

(0.3)

e =lq a,,o bo u,rl' (0.4)

(0.s)

of the ARX model is required to be estimated (i.e. continuously updated) at eachtime step.

The ARMAX and ARIMAX structures differ in the way the additive output disturbance

signal, denoted {(t) , is modelled. The disturbance term in the case of the AITMNK model

strucfure is described as a moving average process

€(t): C(qa)e(t)

where e(r) is a discrete white noise signal having the varianc e t' and,which is coloured by

the polynomial C(q-t) defined as

C(q- t ) :co+crq-r  * " rqt  +. . .+c, l .q  " " ,  
"o :1.

(0.6)

However, in many practical problems the disturbance process cannot sufficiently be

described as a moving average process. Common examples for such situations are cases when

the noise term contains an offset value, i.e. if €(t): C(q1)e(t)+o(t), where o(/) denotes a



(potentially time-varying) offset. The disturbance term of the ARIMAX model structure can

successfully deal with these cases and is definr

€@:9!
I

where A is defined such that A :I-Q-'. The ARIMAX model structure also offers inherent

integration action which is exploited for the controller design in incremental form. Finally,

the ARX model structure can be considered as a subset of the ARMAX model structure for

the case where fl":0, i.e. the noise colouring polynomial C(q.): l . Note that in the case of

fi" )0 the parameter vector d is extended to include the coefficients of the noise colouring

polynomial, denoted c,, i =1. . .n" , i.e.

e =lq a,o bo h,o ct 
","1' ,

thus requiring ELS techniques to be employed.

y(t) =-qy(t -I). . .-a,,,!(t -n,)+bou(t -d). . .+b,,^tt(t -d _n) +e(t)

or alternatively as a linear regression, i.e.

PARAMETER ESTIMATION PROCEDURES

LINEAR LEAST SQUARES

The method of ninear least squares (LLS) is perhaps the most basic and yet widely

used approach for estimating the parameters of an assumed model structure of a system in

control engineering. LLS is used as an off-line parameter estimator, i.e. for estimating the

parameter vector, denoted 0,based on a batch of past input/output datapairs. This section

provides a summary of the properties of the LLS method. Assume an ARX model structure.

i.e- C(q-t) = 1, expressed in the form

(0.8)

(0.e)



y(t) = rf (t)o + e(t) ,

where the vector of observations, also known as the regression vector, is given by

r*(o)=*;tnr)l'=i
;tru, 

-,f Q)ef'

The regression vector comprises of no + nu+ I regressors, which are observed data in discrete

time t = 1,. . ", 1y', where N denotes the number of observations (measurements). The

regression vector consists of the past values of the system output and the system input. It is

interesting to note that the word 'regression' is derived from the Latin word ,regredi,, which

means 'to go back'.

The predicted system output, denoted

then be computed as

i,(t10, based on the parameter vector 0 can

),(t I A ,f @e. (0.r2)

Thus the prediction error, or residual,

expressed as

the measured and the predicted output can be

e(t) = y(t) 9( t10 . (0 .13)

The method of LLS estimates the parameter tor as a best fit between the measured output

y(t) andpredicted output ),Qj|F) over / = 1,.

minimised, i.e.

., N, such that the sum of squared residuals is

(0.10)

(0 .1  1 )

(0.14)

(0.1s)

The quadratic cost function eq. (0.14) can be

0: *n

and the algorithm of LLS is then given by

ed analytically

Jr(0)

,f'E^ry(t) (0.16)



In order to evaluate the accuracy of the estimator consider the estimation error vector defined

as

0:o-0.  (0 .17)

Since in practice the true parameter vector d is not exactly known, it follows that the

estimation error vector is also unknown. However, considering the covariance matrix

corresponding to the estimation error vector, defined by

R = Eloo'1, (0. ls)

whereE['] denotes the mathematical expectation operator, it can be shown that

[ .,v l-r
o =l L,p(t)a, Q) | 4 (0. t e)

Lr: i  I

Commonly only the approximate scaled error covariance matrix is available" i.e.

l r y  l - ^,=l4at)a,@l , (0.20)

which is readily observed to be related to the true covariance matrix via the unknown positive

scalar fi . T'ne scaled, matrix P canbe computed together with 0 from eq. (0.16). The

square roots of the diagonal elements of P correspond to the standard deviations of the

individual estimated parameters. This is a useful observation which can be exploited, hence

the LLS algorithm, via the effor covariance matrix, automatically provides information about

the accuracy of the estimates.

RECURSIVE LEAST SQUARES

In the STC framework there are practical issues, which require that it is necessary to

perform on-line estimation at eachtime step in order to repeatedly update the estimated

parameter vector 01t1 urnew observation data are obtained. For this type of problem the

offline LLS method in is inefficient, because the observed data set grows larger and,Iarger at



each time step. Consequently the computation which ultimately results in the inversion of the

matrix Pbecomes more costly and the demand on computer memory becomes higher as new

observations are made. An efficient way to perform this type of on-line estimation is to make

use of a RLS scheme. The general form of the RLS algorithm may be stated as

[Xew Parameter Vector]= fprevious 
parameter Vector]

+[Conection][Measured output - predicted ourput], 
(0'2r)

where the new parameter vector, denoted 097 , itupdated based on its previous value,

denoted 0A-1, and the latest measured output y(t). The RLS algorithm originally

developed by Plackett (1950), is simply stated here, see e.g. (Ljung,1999), as:

L(t)= P(t -r)dt)1),+e, 1tyr1t -r)aQ)f' ,
01t1 = Ap -y + r(t)ly@ - rf @0Q- r)], (0.22)

P(t) =lrp -g- r(t)f (t)P(t -r)f1

where 0 < )'<1 is a forgetting factor used to repeatedly inflate elements of the covariance

matrix, thus keeping the algorithm alert and assistin g adaptation (Hsia, lg77). The choice of

the forgetting factor is a compromise between algorithm alertness and noise sensitivity

(Burnham et al.,1985). To alleviate this problem, use may be made of a variable forgetting

factor A(t) which is adjusted as a function of the estimation prediction error to retain the

information content within the algorithm (Fortescue et a1., 1981; Wellstead and Sanoff,

1981). Whilst use of a forgetting factor facilitates the tracking of slow variation in

parameters, a technique that facilitates the tracking of rapid parameter variation is that of

covariance matrix reset. Such a scheme, which can be operated in conjunction with forgetting

factors, may trigger reset on set point change, periodically or on detection of large errors in

estimation.

It should be noted that unbiased parameter estimates can only be obtained from RLS

if the observation vector and the noise sequence are uncorrelated (Young, I974);true only in



the case of a white output noise sequence. Alternatively the problem of biased estimates may

be alleviated using algorithms such as ELS, recursive maximum likelihood (Hsia, lgT:,),

recursive instrumental variables (Young, lg70) or a KF configured for parameter estimation

(Randall et al., r99r), which is reviewed in following section. If poor parameter estimates are

obtained due to insufficient input signal excitation cautious least squares (CLS) may be

employed (Burnham and James, 1986; Randall and Rurnham, lg94)in which the algorithm is

kept alert without disturbing the plant. CLS is also useful when attempting to constrain the

estimated parameters to remain within sensible regions based on experience and knowledge

of the plant. CLS has been shown to be an adaptive form of online Tikhonov regularisation

(Linden, 2005).

KALMAN F'ILTER CONFIGURED FOR PARAMETER ESTIMATION

The KF was originally developed for estimating the unmeasurable state vector of a

linear dynamic system, however the KF finds application in parameter estimation as well.

This is due in part to the fact that the KF allows individual forgetting for each parameter, i.e.

selective adaptivity. Consider a time varying state-space representation of an unforced

discrete-time system subject to white process noise

where x(r) is the state vector of dimensi on nxl , A is afi nxn state transition matrix, v(r) is

an nxl process noise vecto\ y(t) is the measured system output, C is an lxn output vector

and' e(t) is the measurement noise. The random processes v(t) and e(t)havezero mean

values. i.e.

x(t +l)= Ax(t)+v(t),
y(t) = cx(t) + e(t),

4vr(t)1, firrQ)l . . . ftv,,(t)f : 0, E[e(t)] = Q .

The covariance matrices are

(0.23)

(0.24)



Elv(i)vr Q)l=V6u,

fle(i)er (i)l =Rd,;, (0'25)

where du is the Kronecker derta function, i.e. having value of unity if i =; and null it j +i .

The processes are independent ofeach other. hence

\v(t)e(t)l=s. e.26)

The KF for state estimation comprises of two parts and is given by

Prediction (between samples based on the state equation):

The estimated state ft(tlt-D at time step I given information up to and including time step

/-l is computed as

i(tlt-r): A(t-1)i(t_rlt_r) Q.27)

and the update of the covariance matrix is

p(t I t _r) : A(t _l)p(t _rl t _r)Ar (t _r) +v(t _r). (0.28)

correction (at the sample instants based on the output equation):

The Kalman gain vector is given by

K(t)-ffi (o'zs)
and the new coffected state estimate is then obtained from

i(t I t) : ft(t I t - r) + K(t)ly(t) - c(t) i(t I t -r)1. (0.30)

The updated error covariance matrix is computed as

P(t lt) : p(t lt -r) - K(t)c(t)p(t | / -1) . (0.31)

The KF can be also configured forparameter estimation. Consider the ARX model

structure expressed in the regression form

y(t)=rf (t)o(t)+e(t) ,

where the parameter vector is time-varying and may be defined as

(0.32)



0(t) = eQ -I)+v(t) . (0.33)

The task is now to estimate the parameter vector 0(t) . The similarity of the state equation in

eq' (0'23) to eq. (0.33) and the ou@ut equation in eq. (0.23)to eq. (0.32)becomes obvious.

hence the state-space moder for the parameter estimation problem is stated

where the state transition matrix is simply the identity matrix and the output vector is the

observation vector. The KF algorithm configured for parameter estimation is thus given by

Prediction (between samples based on the state equation and any other a prior knowledge):

01t1t - t1=0Q-t l t - r )

P(t I t -1) = P(t -t I r-1) + v(t -1)

Correction (at the sampling instants based on the measurement from the output equation):

K(t1: P(tlt-r)(^t)

0(t) = eQ -D+v(t),

y(t) = rf @e@ + e(t),

R(t)+d @P(tlt -L)rp(t)

01t 1t1 :0Q lt -r) + K(t)lt(t) - C (DeQ lr -1)l

(0.34)

(0.35)

(0.36)

(0.37)

(0.38)

(0.3e)P(t I t) = P(t I t -r) - K(t)rf (t)P(t I I -D

The main difference between RLS and the KF for parameter estimation is the way in which

the algorithms are tuned to track parameter variation. Whereas the RLS algorithm uses a

scalar valued forgetting factor to give equal adaptivity for all parameters, the KF, via the

diagonal elements in V in the covariance matrix prediction step, utilises selective adaptivity.

In other words, rather than inflating the covariance matrix by dividing by a scalar less than

unity as in RLS, the inflation step in the KF is carried out by addition of the matrix Z. In this

way varying degrees of adaptation may be realised, thus allowing a priori knowledge to be

incorporated into the algorithm. Whilst it is usual to consider only the null or positive entries



on the diagonal, the off-diagonal entries may also be exploited to build-in fuither knowledse

on the cross-correlation between certain model parameters.

CONTROL LAW DESIGN PROCEDURES

MINIMUM VARIANCE REGULATOR/CONTROLLER

The minimum variance GvrD regulators and controllers are considered as a class of

optimal schemes, where the optimality is defined by a prescribed cost function. The aim is to

minimise the variance of the system output y(t) viaan optimal control input u(t).The

optimal value of u(t), in the MV sense, is fulfilled when the following assumptions hold:

Assumption I The system to be controlled is linear,

Assumption2 The costfunction J is quadratic.

Assumption3 Noise affecting the system output is Gaussian.

Thus the MV regulators/controllers are also regarded as belonging to the family of LeG

(!inear, quadratic, Gaussian) regulators/controllers.

MINIMUM VARIAI\CE REGULATOR

Consideration is initially restricted here to the regulator problem, i.e. the desired output or set

point, denoted r(t), is equal to zero. The MV regulator cost function is defined as follows

J*: Elt' Q + ef (0.40)

where d denotes the normalised system time delay. The objective is to determine the

optimum value of the current system input u(t), which minimises the cost function eq. (0.a0)

' Note that the current system input at discrete time I affects the future system output at time

(t + d). The MV algorithm can be derived assuming different model structures. However. for

ease of derivation only the ARX models are considered here.



Prior to deriving the general form of the MV algorithm for any ARX model structure

it is helpful and intuitive to consider the following particular example.

Example 1. consider the system described by an ARX model structure, i.e. c(q-'y:1 ,

having flo:2, flb:1 and d :l expressed as a rinear difference equation

where y(t) is a linear combination of the past outputs and past inputs with the most recent

input affecting the current output being delayed by one sample step. Since the objective is to

determine the current irryut u(t), shifting forward by one step leads to

y(t +l): -aJQ)-ary(t -I)+bou(t)+bruQ -I)+e(t +I) .

(1 + orq-' + arq-2 ) y (t) : q-, (bo + \qr )u(t) + e(t) .

Expanding and rearranging to a more convenient form leads to

y(t) : -aly(t -l) - ary(t -2) +bou(t -t) +b,u(t -2) + e(t) ,

u(t):*sryffJ^(u(t)) .

This procedure can be performed in four steps:

1) Expand quadratic cost function

(0.41)

(0.42)

(0.43)

Note that in general (i.e. for any d >1) it is possible to predict the output values up to time

(t + d) based on the current and past values of control actions. Consequently the MV

schemes are also known as d-step ahead predictive sohemes. In general, the optimal value of

u(t) is obtained by differentiating the cost function eq. (0.a0) with respect to (w.r.t) the

argument u(t) and equating to zero for minimum, i.e.

(0.44)

Prior to expanding the cost function JR a number of preliminary issues are

highlighted. The output y(t +l) in eq. (0.43) is unknown since the future random disturbance

e(t +l) is unpredictable. The quantity y(t +I) can be separated in two parts as follows



y(t +l): i(t +llt)+e(t +l), (0.45)

where i'(t +l I r) denotes the best prediction of y(t +l) based on information available up to

and including time / (in the sense of minimising the squared prediction error) and e(/+l) is

the unknown noise term. The term l(t+l lr) is then expressed as

)(t +llt): -qy(t)-ary(t -t)+bru(t)+bru(t _l) .

The cost function eq. (0.a0) can then be expressed in the form

J^: El! '(/+l)]
: EliQ+rlt)+e(t*t)J'

(0.46)

(0.47)

(0.4e)

(0.s0)

: nl),{t +tlt)l' +2Eli(t +rlt)e(t +r)]+ EleQ +r)]'z .

Since the noise is independent of the predicted output the second term of eq. e.alvanishes.

The third term, by definition, is the noise variance 4. The cost function J* canthus be

expressed as

JR: Eli(t+rlt)] 'z+Q. (0.48)

Note that the minimal achievable cost of the above expression is the noise varian ce 4, since

the term l)'(t +l I r)]'z is forced to be null by the control action. The expansion of the cost

function J^ canbe carried out as follows

JR: EliQ +rlt)] 'z + Q
= (-qy(t) - ary(t - t) + bou(t) + eu(t -lD, + 4

by omitting terms that do not involve u(t) , define the modified cost function j^, i.e.

i^ : 2bp7t)(-qy(t) - ary(t -t) +bru(t -t)) +Fou'1t1 .

2) Differentiate with respect to the argument

The expanded cost function eq. (0.50) is differentiated w.r.t. u(t) as follows

ar^
*(r): 

2bo?qv(t) - arv(t -r) + \u(t -r)) + 2blu(t) . (0.s1)



3) Equate to zero for a minimum

The next step is to equate eq. (0.51) to zerc for obtaining a minimum, hence

boGqyQ) - q2y! -I) + bru(t -l)) + ft,u(t) : 0 .

Note that since the system is linear a global minimum is obtained.

4) Determine control action

Rearranging eq. (0.52) to solve for u(t) gives the MV regulator algorithm

(0.52)

(0.s3)

(0.s4)

T

Note that the above result reinforces the need for bo + 0. The MV regulator algorithm in the

case of any value of no and nu and for a fixed value of d =1 is then given by

u(t) : 
qY(t) + arv(t - l) - bru(t -l)

bo

u(t): tl,:f.,'ru + d -i)-*ru-Dl

),(t + i I t) : ars ffifr, zle' {t + /)] ,
: nE ffilzltQ + i - iQ + j lt)f',

The general form of the MV regulator for an ARX model structure assuming d >l js

now cosidered. The d-step ahead prediction of the system output is required. This is

accomplished through the linear predictor. The predictor of y(t + d) minimises the

mathematical expectation of the squared prediction error e(/), i.e.

(0.ss)

where )(t + i | /) denotes the prediction of y(t + j) based on information available up to and

including time t and over the range j =1,...,d . Computing the prediction of the output by

minimisation of eq. (0.55) for higher values of the delay d >l is rather impractical and, a

recursive form of the d-step ahead predictor is developed instead, which can be relativelv



straightforwardly programmed. The d-step ahead predictor of the system output for the ARX

model structure is given by

9(t+ j1t):M,(u)yQ)+Nj(q-t)uQ), (0.56)

where the polynomials u,(o-\ and N/Q-t) are,respectively, defined as

*tr(f): ff i j ,o*nti,tQ 1 +rni,ze2 *...*mi,ie-,, i:no-l: n*, (0.57)

N,(a-\ : t t i ,s* t t i , tq- '+ni , rQt * . . .*ni , iQ ' ,  i :nu+ j  - l :nn.  (0.5g)

The individual coefficients ffii,i and fli,i are generated, respectivelS as follows

ffi j ,,:f1-o,*,-,,,f-ai+i (0.59)
FI

and

ni,;:bi-fio,r,-,,,-,), (0.60)
t:1

where ft i i - t , i=0 i f  subscript i :1, andthe lsvm fl i- t , i- t=0 if  j : lor l>i.Theprocedure of

generating the polynomials ttt,(A-\ and N/g-l) is shown in the following illustrative

example.

Example 2. Generate the coefficients of the polynomiats M/A-\ and N/g-t) for the ARX

model skucture having fio:3 , flb:2 and d :2. The model is given by

{t)=-o.,y(t -r)-a,y(t -2)-o"y(, -z)-uou(t -z)-4"(t -z)_t,u(, _+). (0.61)

Shifting forward by one step the prediction at time (r +1) is computed as

),(t +tlt)=-qy(t)-a,y(t -r)-a,y(t -z)-nou(t -t)-nu(t -z)-n,u(t -t) e.62)

and shifting forward by one more step the prediction at time(t +2) becomes

i,(t +zlt)=-q),(t +rlt)-a,y(t)-",y(t -r)-bou(t)-nu(t -t)-u,u(t -z). (0.63)



Substituting eq. (0.62) tor j,(t +llt) neq. (0.63) leads to

j, (t + 2 1 t1 = (a, - a,) y (t) + (qo, - or) y (t _ t) + (qa,) t (t _ zy * bou (t)
+(4-qb,)u(t -r)+(t,- q4)r(t -2)+(-a,b,)u(t -t), ' 

(0'64)

which is the desired prediction of the system output at time (t +d). The same results will

now be obtained urilizingthe predictor eq. (0.56). rhe M/o-1) and U,({') polynomials are

computed recursively for j =1,...,d. starting with the prediction j =!,the Mr(qr)

polynomial has order fl* =fro-r:2 and, making use of eq. (0.59), its coefficients are

computed as

4,0 =-4!t%,0-4=-Ql

n\t=-elhJ_az=_d2, (0.65)

n\ ,2=-%!h,z-q: -q.

The Nt (q-1) polynomial has order ftn : nb + j -l = 2 and,utilizing eq. (0.60), the individual

coefficients are computed as

4 ' :bo -qno i  =bs ,

7 \ t=4 -4 f r0 ,0=4 ,  @.66 )

4,2 =bz-4ft0,r =bz.

For the prediction j :2, the orders of the corresponding Mr(q-l) and Nr(qt) polynomials

are nn=no-1=2 and fln:flb+ j-I:3, respectively, so thatthe individual coeffrcients are

obtained as

ffiz,o =(-an,o - arh,o)-a, = a1e- a2t

f f iz , r : ( -arn, r -arh, r ) -%:4az-az,  (0 .67)

h,z : ?qn\,, - azlro,) - aq : eaz,

and



fr2,0 =bo -(orr\,_, * azrxo,-z) =bo,

nz,r : br - (nn,, + ornr,_r) = b, - Arbs,

f t2,2 =br-(qrrr , r+ orno,o) =br-  e4,

frz,t = bz -(qrrr,, * azfro,r) = -orbr,

respectively.

Minimising the cost function eq. (0.40) and utilisng the d-step aheadpredictor eq.

(0.56) leads to the general MV regulator algorithm firr an ARX model structure

(0.68)

l

(0.6e)

where i = d and bo =fta,0. Note that the recursive generation of )(t + j lt) from eq. (0.56) is

not the only approach for developing the MV controller. A widely utilised alternative is the

adoption of the so-called Diophantine equation (Clarke et a1.,1987; Wellstead and.Zarrop,

1991). This approach is directly applicable for any ARX, ARMAX and ARIMAX model

structure.

MINIMUM VARIANCE CONTROLLER

In many industrial applications the aim is not just to drive the output to a zero value,

as in the regulator case, but to track a reference signal r(f), which is then referred to as a

servo controller. The reference signal r(f) is known up to and inlcuding time t. The servo

controller MV cost function is defind as

tr:EltQ+d)-r(t)1'z. (0.70)

In a similar manner to the regulator case, a derivation of the MV control algorithm is

highlighted initially via aparticular example which is then followed by a generalised

algorithm for an ARX model structure.

u(t) : ;l fu ,y(t - i) -L,,,,,a - 01,



Example 3. Consider a system described by an ARX model structure having fio:2, flb:l

and d:1. As for the MV regulator, following the four step procedure, the first step is the

expansion of the quadratic cost function, which is now defined bv

tr: EltQ+\-r(t)]'z , (0.71)

where, substituting j'(t+llt)+e(t+l) for y(t+l) defined in eq. (0.45), the cost function -r"

becomes

J s : EliQ+ 1 | /) + e(t +t) - r@l'
: nlt 1t + t 1 tSl'z - zn ly Q + | | t)r (t)]+ E l, (t)l'

+ Efe(t +t1l' -znle(t +r)r(t)l+znli,Q +rlt1e(t +r)1.

Since the noise e(t+l) is independent of r(t) and ],(t+l lr) the last two terms of eq. (0.72)

vanish. Note that the variance of the reference signal Efr(t)]'z : fi enters the cost function

and increases its reachable minimal value. Defining the modified cost function ir,by

omitting terms that do not involve u(t),leadsto

i, :4u1t1?qy(t)-ary!-D+\u(t -r)-r(t))+bluz(t). (0.73)

The minimisation of the modified cost function i, canbe computed analytically by

differentiating j5 w.r.t. the argument and subsequently setting the derivat fu" 
hto 

zero.

So that differentiating gives

N"
*(r) 

: 2boFqv?) - a,vQ -r) + \u(t - I ) - r(l)) + z$u(t)

and setting to zero for a minimum yields

-a1y(t) - azy(t -l) +bru(t -l) -r(t) +bouQ):0 .

Rearranging to solve for z(r) gives

(0.72)

(0.74)

(0.75)



(0.76)

T
In a similar manner to the regulator case, it is straightforward to show that the general form of

the MV controller for an ARX model can be derived as

u(t): +l-y-, ,y(t -i)-fu,,,r(, -i)+r(t) l, (0.77)bo L i=t i-t 
'/ ' \ '/ 

f '

which may be directly compared to the regulator case given by eq. (0.69).

Simulation Study: MV Controller

consider the system described by the ARX model given by

y(t) =I.sy(t -r)-0.7 y(t _2)+0.7u(t _r)+0.3u(t _2)+e(t) (0.7s)

having the noise vaiance 4 =t. The system runs in an open-loop setting during the time

interval 7 =(I,25) and in a closed-loop setting with the MV controller eq. (0.7l)during the

time interval t = (25,100) . The reference signal switches befween *5 units with a period of

25 samples. In order to assess the ability of the controller to track the reference signal the

mean square error (MSE) criterion is introduced. The MSE is defined as

MSE==!fi, y@-r6),], e.7s)N -to 
L,=,0 |

where N:100 denotes the total number of discrete time steps and trdenotes the start of the

evaluation. The mean square control (MSC) criterion is introduced in order to evaluate the

usage of control effort, e.g. energy, and this is defined as

MSC= - 1 [$-',' ' ' l
r/_/^ | L"'t,t l. (0.80)

' oo 
1t=to J

uQ) : qY(t) + arv(t -l) - 4u(t - r) + r(t)
bo



The results of simulation of the system together with the MV controller are shown in Figure

2. Theperformance in terms of MSE and MSC arc fugE = 4.22 and. Iugc :19.46,

respectively, for /o = 30. It is evident that the MV algorithm achieves its control objectives

during the closed-loop period.

Figure 2' Simulation of the MV controllerfo, 7 =(7,25) in the open-Ioop setting and
for t =(25,100> in the closed-loop setting.
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GENERAL REMARKS ON THE MV CONTROLLER

The practical problems of choosing the sampling interval for the estimation of the

model parameters are discussed here with connection to the MV controllers. Properties of the

MV control are also discussed.

To illustrate some of the MV controller properties consider an ARX model structure

having flo : 2, flb :1 and d :I.The discrete time transfer function for this svstem is

Output signal

(0.81)



The MV control algorithm for this system is

or in transfer function form

u(t) : 
qY(t) + arY(t - l) - bru(t -l)

bo

Y(q) :a!!z
R(q) q'

(0.82)

(0.83)

Note that the denominator of the controller eq. (0.S3) consists of the numerator of the system

eq' (0.81), hence if the system zeros are outside the urnit circle the controller poles become

unstable' A system with the zeros outside the unit circle is known as a NMp system. This

phenomenon occurs naturally or can be caused by inappropriate selection of the sampling

interval z"; choice of e" is therefore crucial. It is recommended by the authors to choose r"

such that d e<1,5 >, where 5 is considered to be high. In summary, since it is noted that MV

controllers achieve their objectives by cancelling process zeros and that choice of z" too

small can give rise to a NMP representation, it is important when dealing with MV control in

practice to consider such factors.

The closed-loop transfer function for the given system and MV controller is

(0.84)

hence the closed-loop poles lie at the origin and the response of such a system is as fast as

possible; sometimes referred to as 'dead beat' response. This leads to excessively large

demands on control action u(t),whichcan be practically infeasible to realise.

GENERALISED MINIMUM VARIANCE CONTROLLER

The GMV controller has been proposed in order to overcome some of the issues

connected with the concept of MV controllers. The issues are namely the excessive use of



control effort in achieving the control objectives and the shortfall of controlling NMp

systems. Introducing the cost function of the form

Jc* : nl{h,tt + q - R (t))' + (et(0)r1 (0.8s)

allows for a trade-off between tracking performance and cost of control. The scalars p, R

artd Q are user specified cost weighting parameters. Another formulation of the GMV cost

function can be found in (Wellstead and Zarrop,Iggr),where the cost weighting parameters

a're assumed to be polynomials. The cost weighting param eter Q is of particular importance,

since for Q>0 the control effort is constrained, having the effect of displacing the closed-

loop poles away from the origin; i.e. no longer a deadbeat response and more practically

realisable. The GMV conholler is derived for the illustrative example.

Example 4. consider a system described by an ARX model structure having fro:2, flu:l

and d:1 expressed as a linear difference equation

y(t +1) : -aJQ) - ary(t _t) + bou(t) + bru(t _l) + e(t +t) . (0.86)

Separation of known (current and past) and unknown (future) information leads to

y(t+l):  y(t+t l t)+e(t+t),  (0.87)

where

y(t +llt): -qy(t)-ary(t -t)+bou(t)+bru(t -t) . (0.88)

The next step is to expand the quadratic cost function Jo*,hence substituting eq. (0.g7) into

the cost function eq. (0.85) gives

J o* : nltn<t+ 1 | D + pe(t + t) - Rr(t)), + (grrT))rf,
:n14,(t+rl0]' -ElzpRi(t+.rlt)r(t)l+ale.t(t)l' 1o.sr;
+ nfnrg\' + nfnep*l)]'.



The last two terms are weighted variances of r(t) and e(t+l), which forms the minimum

achievable cost f,or Jo*' omitting terms which do not involve u(t) leadsto the modified

cost function, which takes the form

J or, : 2trbou(t)(-alQ) - azyQ - 2) + bru(t -t))

+ (pbou(t))2 - 2 pRbou(t)r (t) + (gu (t)), .

Differentiation of the modified cost function jow w.r.t. u(t) is computed as

(0.e0)

and setting to zero for a minimum

fboeqyQ) - ary(t -2)+bru(t -t)) + p*ouQ) - pRbor(t) +eu(t) : 0 (0.s2)

leads to the GMV control algorithm

A l

# : 2P2 bo(qy(t) - ary(t - 2) + bru(t - L))du(t)

+ 2(Pb)2 u(t) - 2 pRbor (t) + 28 u(t)

u(t): 
PbolP(qv(t) + ar\{t _l) -ku(t -l)) + k (t)l

tr6 *A

(0.e1)

(0.e3)

T
The general form of GMV controller for an ARX model strucfure, which holds for anv value

of no, nu and d canbe derived by adopting the d-step ahead predictor

9Q + j 1t): M,(a)yQ) + N,(q1)u(t) , (0.e4)

where i :1,...,d and the polynomials u,(a) and N/g-t) are defined in eq. (0.57) and

eq. (0.58), respectively. The same procedure for obtaining the controller for the special case

of d: I is followed, but with use made of the d-step ahead predictor eq. (0.9a). The GMV

control algorithm for an ARX model structure is then given by

r - - r r  - . r - 1  |  u  h -  Iu(t):lP"}.r*A )' h,.rl Rr@-p>mj,,y(t-i)-pb,,,u(t -Dl, (o.es)
r:0 i:l I



where i : d and ni,o: bo ' The GMV controller has advantageous over the MV scheme, but

choice of the controller weighting P, R and Q is not immediately straightforward. For

example too large a value for Q may result in the output not achieving the set point. Whilst

there are ways to overcome this via careful choice of the other weightings, altemative

incremental formulations offer immediate advantages.

INCREMENTAL GMV CONTROLLER

Recognising the difficulties in achieving a satisfactory trade-off via the cost weighting

parameters and the additional potential problems due to the presence of non-zero mean output

disturbances with the standard GMV scheme, prompted the need for an alternative approach

and the incremental form of GMV (IGMV) was proposed. Such an approach guarantees a

type-1 servo mechanism performance, hence azero steady-state error is achieved for a

constant reference signal. This is due to the inherent integral action within the IGMV scheme.

To realise this scheme, the IGMV cost function is defined as

J,orn : Ely(t +d)-r(t)l' + )"ElAu(t)]2 , (0.96)

in which only a single weighting parameter 2 is required. The derivation of the control

algorithm is illustrated via an example.

Example 5. An ARIMAX model structure is used to derive the IGMV control aleorithm.

The model is given by

A(q')y(t) : q-o B(q-')uQ) +{) eQ) , (0.e7)
A

where, for simplicity, the case of C(q-'):1 is considered, hence yielding the ARIX model.

Consideration is given to an example system in which fro:2, frb:1 and d :1. The model

given by eq. (0.97) can be expressed as



(l+qq-'*orqt)ty(t):q-t(bo+hq)n (t)+e(t). (0.98)

Defining the polynomial 7@): M(q-') an expression for eq. (0.9g) takes the form

(t+a,q-L +4q-, +qq.)y(t):q-'(br+eqr)Lu(t)+e(t), (0.99)

where

d,:  (a,-n,_r)  (0.100)

The aim is to determine u(t), hence shifting the output d-steps forward leads to

y(t +I): -d,y(t)-dry(t -l)-dry(t -2)+ boNt(t)+brLu(t_1) +e(r +l). (0.101)

Assuming a zero mean Gaussian distributed white noise signal, the best prediction for e(t +l)

is zero. The predicted output at time (t +d) is then expressed as

y(t +llt): -d,y(t)-dry(t -\-aryQ -2)+boAu(t)+brM(t _l) (0.102)

and the system output at time (f + 1) can be re-expressed as

y(t +l) : y(t +71t) + e(t +t) . (0. 1 03)

The next step in deriving of IGMV controller is the expansion of the quadratic cost function

Jro*, hence substituting eq.(0.103) into the cost function Jrorn gives

J** : [yQ + d) - r(t)12 + AEIM(I)12 ,
: \j,(t +rl t)1'z -zEly(t +rl t)r(t)l+ ).qM(t)12 (0. 1 04)

+ E[r (t)]2 + Ele(t + I )l'.

Defining the modified cost function i,orr,(omitting terms which do not involve Au(t)) and

exapanding leads to

i,rr, : 2boM(t)(-dryQ) - dzyQ -\ - dry(t -2) + b,N,t(t -r) - r(t))

+b((nQ))'z+.1(au(t))'z. 
(o'los)

Differentiating w.r.t. the argument M(t) and equatingto zero for a minimum, leads to



qryk : 2bo(d,y(fi - ary(t -\ - ary(t -2) + b,au(t -r) - r(t))ALU(I) 
--u\ --r- ' \-" *2r\" *3"v\L L)TLtLl)u\t ' -L)-r ' \ t ' ))  

(0.106)

+zblAu(t)+2tM(t)

and

boG4yQ)- qy! -D- qy! _2) +\Au(t _r) _r(t)) +gau(t)+ )Au(t):0 . (0.107)

Rearanging the eq. (0.107) to solve for Au(t), the IGMV control algorithm is given by

N.t(t) - 
bo(d's"(t) + a tv G - 1) + \ry Q - 2) - br&t(t - r) + r (t))

tF;; (0'108)

The applied control action to the plant is then computed as

u(t):u(t-I)+M(t), (0.109)

thus guaranteeing type- 1 servo-mechanism performance.

T
The general form of the IGMV controller requires a d-step ahead predictor. In an

ARD( case the predictor is derived in a similar manner to that for an ARX model structure eq.

(0.55). The predictor for an ARIX model is given by

9Q+j l t ) : i@-')y( t )+Gj(q ' )M(t) ,  (0.110)

where i :1,...,d andthe polynomials I@) and G1(Q-t) are defined as

1@): P j,o * Pi,rl-t * pi,rQt *. '  .* pi.,e-' , i : no -l: no, (0.1 I l)

j1 nh

c,(l-\:l(p,,oQ-'b,q-'), nr:nb+ j-1, (0.112)
l=0 i:0

respectively, where the individual coefficients pi,i of the successive P,(q') polynomials are

evaluated as follows

Pj,r: Pi-t, i*t+(a,-a,*r)Pit,o, Po,o:7. (0.113)



Note that the polynomial order nr linearly increases as the number of predictions jr

increases. Minimising the cost function Jro* with respectto M(t), utilising the d-step

ahead predictor eq. (0.1 10) for an ARIX model structure leads to the IGMV controller

Au(t):lgj,o + 2f-, si,olrUr-fu,,,at (t -D-fJ,,,y(t -i)1, (0.I 14)
L r:1 i:0 

_l

where i: d and g,,o:bo,with u(t) finary being obtained as indicated in eq. (0.109).

General Remarks on the GMV Contrdller

The GMV controller is a natural extension of the MV controller. Whereby

constraining the control effort of the MV controller the issues connected with NMp systems

and excessive use of control action can be overcome. The choice of the cost weighting

parameters is crucial and application specific. The P, R and, Q parameters can be chosen

either by an operator or adaptively (with some initial a priori values) within a STC

framework. The former is discussed here. Setting p=R:1 and e:0 results in MV control.

Setting P: R:1 and varying Q>0 allows a trade-offbetween tracking ability and

reduction of control effort. Hence, by over-conskaining the control effort (e.g. energy) the

GMV controller may not achieve the set point and steady-state errors occur. This can be

overcome by retaining P=l and setting R > I , which results in a new 'dummy' set point

aim. Note that the importance of tracking ability versus reducing control cost is governed by

the ratio P:Q andnot by their absolute values. The steady-state offset problems can also be

overcome by using IGMV control, where inherent integral action guarantees type-l

performance. In addition only one tuning parameter 2 is required. Note that choice of )"=0

results in incremental MV control.



POLE PLACEMENT CONTROL

The next chronological development in the historic-technical review is that of self-

tuning pole-placement (or pole-assignment) control (Wellstead et al., lgTg).The aim of pole-

placement control (PPC) is to match the closed-loop transient behaviour of a feedback system

to a desired user prescribed form. Often referred to as eigenvalue assignment, the effect of

PPC is that of relocation of the closed-loop poles of the system. The method is suitable for

controller design where the performance criteriamaybe expressed in terms of the classical

frequency or transient response. The approach has proven to be attractiveto practising

engineers, due probably to its close links with classical control. For the development of the

PPC the system represented by noise free ARX model is considered

A(q' ) y(t) : q-d B(q-' )r(t) .

The control law of the PPC is defined as

(0 .115)

r@)u(t) = G@)y(t) + Mr(t), (0.1 16)

where the controller polynomials F(q-l) and G(q-l) are, respectively, defined as

F(qt ) :  fo+- f rq- t  + f rqt  * . . .+ , f , , rq-" r  , fo :1,  (0 .117)

G(q- ' ) :  go igrQ- '+grqt  +. . . - rgure-ns,go*0 (0.11g)

having the corresponding recofitmended orders flf : fln + d -l and nr : flo -1, respectively.

Figure 3, Pole-placement controller with compensator.

Controller



The system configured in closed-loop with the controller is depicted in Figure 3. The closed-

loop transfer function is given by

where

q" B(q')M
F (q-' ) A(q') - q- o c(q, ) B (q')'

The aim is to assign the closed-loop poles to a specified location by equating the

characteristic equation (denominator) of eq. (0.119) to a user specified design polynomial

f(q- '),  i .e.

F(q-')A(q') - q-o c(q')B(q') : t(q-r) ,

ffi:lgtn'll'-n-'ffi]',

[ - (q- t )  :  TotTf l - '+yrqt  +. . .+ T, , rQ' ,  ,To:1

SSG: I o-o B(q')u-l = BOM
L' f(q-') l,-':, f(1)

M = l Q ) .
B(1)

(0.11e)

(0.120)

(0 .121)

(0.r23)

is the desired closed-loop characteristic polynomial having order n, = flo. The controller

polynomials F(q-t) md G(q-t) are related to model polynomials A(q-L) and B(q-l) via the

Diophantine eq. (0.120). The desired transient response is designed through the polpomial

l(q-'),however by assigning poles for the closed-loop system the steady-state gain (SSG)

will be affected. Making use of the final value theorem the closed-loop SSG is computed as

(0.r22)

The idea is to design the gain M suchthat SSG = l, hence the compensator for such a SSG is

then

This approach, literally, cancels the offset due to f(q-t) on the closed-loop SSG, so that,

provided there is no model mismatch, the steady-state output match the reference signal r(r).



Such a gain compensated PPC is then able to achieve both the transient response and desired

steady-state gain simultaneously. The following illustrative example shows the design

approach and the implementation of ppC.

Example 6. Considerthe systemhaving f lo:2, frb,:I  and. d:1 givenby

Q-l.q' +0.7q1)y(t): q'(0.7+o.\r)u(t)+e(t) , (0.r24)

where e(t) is zero mean white Gaussian distributed measurement noise with variance

4 :0.s. The open-loop poles of the system are 0.7500+0.370gi, i.e. underdamped

response. The aim is to achieve a critically damped response such that repeated closed-loop

poles are defined to be 0.5 and 0.5. so that

l(q-'):1.0000-1.0000q-1 +0.2500qa. (0.12s)

The Diophantine equation eq. (0.120) for fl"r =I and. nr = 1 becomes

(I+ "flql(l+ o.,q-t + a2q-\ - q-t (go * grqt)(bo +4q-t1 : (t+ Trq-' + yrq.) . (0.126)

By equating coefficients of like powers, the above expression may be reformulated in the

convenient matrix form

The unknown controller parameters may be computed directly from eq. (0.127) via matrix

inversion or using Cramer's rule

fr:4@pr-bosr) I p,

go: ((ebr-arbo)sr-brsr) I p, (0.12g)
gr: ar(b,rsr-bosr) I p,

where



p: b? + arft - ebo4,
\ :  T t - 4 ,
sz :  Tz -az .

(0.r2e)

(0.130)

Note that p is the determinant of the matrix in eq. @.127).In order to compensate for the

steady-state elror, which occurs by relocating the original open-loop poles, the compensator

Mis introduced, i.e.

M:lG)  - r+Tt+-y ,
B(1) bo+\

The control action can then be determined from eq. (0.116), which may be expressed in the

difference equation form as

u(t) : -fru(t -l) + gry(t) + gry(t -t) + Mr(t) . ( 0 . 1 3 1 )

O

form utilising aThe above pole placement controller has also been realised in state-space

minimal realisation representation, see (Warwick, I 98 1 ).

OUTLINE OF LONG RAIIGE PREDICTIVE CONTROL

The GMV and IGMV schemes are model-based d-step ahead predictive controllers.

The accuracy of the prediction is closely related to the quality of the model. Not only the

model parameters are required to be estimated, but also the integer valued normalised time

delay of the system. If the estimated delay is less than the true system delay, then the

controller attempts to generate large control action, which can destabilize the system. In the

case of an overestimated delay the control is no longer optimal and the variance of the output

signal may increase. The issues connected with the estimation of the delay or even avarying

time delay of the system can be resolved by adopting a long range predictive control strategy.

lnstead of a d-step ahead prediction of the output, a prediction of the output up to a prediction

horizon, denoted Ho2d, is performed, where H, is a controller tuning parameter. Via long



range prediction beyond the delay of the system and beyond the inverse response of NMp

systems the control becomes stable and robust against model mismatch. One member of the

class of long range predictive controllers, namely the GPC algorithm, will be covered here.

GENERALISED PREDICTIVE CONTROL

GPC has had a significant impact in terms of recent developments in control, as the

currently widely adopted three term PID controller, when it become a popular choice as an

industry standard. It is a popular model-based control method and is being used in industry.

The approach was proposed and developed by Clarke et ql. during the 1980's, see (Clarke et

al.' 1987)' The idea of GPC is to minimise the variance of the future error between the output

and set point by predicting the long range output of the system and separating the known

contributions to fufure output from the unknown contributions. In this way a vector of future

predicted elrors can be used to generate a vector of future incremental controls. The aim is to

minimise the GPC composite multi-stage quadratic cost function defined by

lh -  Hc  I
Jcpc: alljt(t + i)-r(t + i)]' *blnO+ j -Dl'z I

Lj:d i:1 
- 

|

(0.132)

with respect to current and future values of the incremental control action M(t + i -l) . The

user specific tuning parameters are the prediction horizon, denoted Ho2d ,the control

horizon, denoted H">1, and a cost weightingpararneter ),. It is convenient here, during the

derivation of the GPC algorithm, to consider the control horizon to be such that H" : H o; in

practice however H" {Ho. Note that, beyond 11" further incremental controls are assumed

to be zero. The structure of the cost function for GPC can be seen as an extension of the cost

function for IGMV, where the main difference is the idea of a long range receding horizon.

Following this idea not only y(t + d) is required to be predicted as in IGMV, but also the



predictions y(t + i) , i : d,...,Ho; with this concept providing a basic framework for long

range predictive control. In the development of the GPC algorithm the ARIMA; model

structure is considered

A(q-')y(t): q-d 37n-\u@+$) eQ) , (0.133)A

where for simplicity C(q-1):1, i.e. an ARIX model structure is assumed. The case of

C(q-') > I is investigated in (Clarke and Moht adi, 1989;Camacho and Bordons, 2004). The

cost function Jcr" consists of future values of the reference signal r(t + i), j : d,...,Hp,

which are assumed to be known in advance. Future values of the ou@ut are required to be

predicted and future incremental values of the control action Nt(t + i -D , j :1,. . .,H", are

yet to be determined' The following example illustrates the prediction of the output up to an

horizon of Ho:H":3 steps.

Example 7. Consider a model having fro:2, frn:l and d = I , hence

(l+orq-, +arq.)Ly(t):q'(bo+\qr)M(t)+e(t) (0.134)

and defining the polynomial A@): M(q-t) expression (0.134) becomes

0+4q-' +dre. +drqa)y(t):q-'(bo+hq)Au,(t)+e(t), (0.13s)

where

d,: (a, -a,_r) . (0.136)

The output at time (r+1) is then

y(t +1): -dry(t)-dry(t -t)-4y? -2)+boAu(t)+brAu(t _1)+e(t +t). (0.137)

Assuming zeto meanwhite noise the prediction of e(t +l) is null. The best prediction of the

output in the sense of minimising the squared prediction error then becomes



y(t +tlt): -qy(t)-dryQ _\_dry(t _2)+boAu(t)+brAu(t _t) . (0.138)

The prediction at time (t +2) and (t +3) is computed, respectively, as

v ('l + 2',', : :;',:i,l,l,i7l g, _?;:r,? :i,i,,'_i,?,;:fyl (0 I 3 e )
+ b o Lu (t + 7) + (b, - d,b r) Lu (t) + (y0 - d rb,) Nt (t - t)

and

Y(t+3"':-i:f 
,',;'l?,;]!!n,i'?;i;,!),!!iYY.:):;y,l;lll,,

-eatQ- aLd)- aza3)yQ -z)+boLu(t +2) (q-dt,bu)Nt(t +l) 
(0' 140)

+ (- d, (b, - d,b ) - d rbr) Au (t) + ( a,e - a p ) - a 2b ) M (t - t\.

Note that An(t), -.,Lu(t + j -r) , j :1,...,H", are unknown values of the future incremental

control action, which areyetto be determined by minimisation of the multistage quadratic

cost functiofl Jor". Note that when H,=d, IGMV is a special case of GpC where the only

unknown is M(t).

e)
The predictor for an ARIMAX model strucfure, when considering the case of

C(qt):|, canbe computed as follows

9Q+jl t) :1@-')y(t)+Gj@)M(t+j-r) ,  (0.141)

where j :I,. . .,Ho denotes the prediction and only last j : d,. . .,Ho values are used in the

development of the GPC algorithm. The polynomiats Pr(C-t) and Gi(Q-') are defined as

1@-'): Pi,o* Pi,rT-'  t  Pi,rQt *.. .+ pi,,Q-',  i :no =nn-1, (0.142)

and

i-l nh

c,(u-\:Z(pryq-'2,,b,q-'), nr: nb + j -r,
l:0 i=0

(0.143)



respectively, and where the individual coefficie nts pi,i of successi ve p,(qa) polynomials

can be computed as follows

Pi, i :  Pi l i*r*(q,-a,*r)pi-yo,po,o:1. (0.144)

Note, that the order of the Cr@t) polynomial linearly increases as the number of the

predictions 7 increases. The following illustrative example shows the prediction

Ho: H":3 utilising the predictor eq. (0.141).

Example 8. Consideramodelhaving fio:2, f ln:I and d=1. Thepredictionof the future

outputs utilizing the predictor eq. (0.141) then becomes

y(t +tl t) : pr,oyQ) + pr,ry(t -l) + pr,ry(t _2) + gr,rAu(t) + g,rNt(t _l),

)(t + 2 | t) : p r,oy(t) + pr,ry(t - l) + pz,ry (t - 2) + g r'Lu(t + l) + g r.rVt(t)
+ gr,Ltt(t -I), (0.145)

)(t +3lt): pr,oy(t)+ pr,ry(t -I)+ pr,ry(t -2)+ gr,oN,t(t +2)+ gr,rNt(t +t)
+ gr,rNt(t)+ g,rMt(t -l).

The above predictions of the system output can be expressed in matrix form, where the

known and unknown conhibutions to the predicted outputs are separated as follows

Pr,o Pr,r Pr,z 
Y(t)

Pz,o Pz,r pz,z Y(t -l)

Ps,o Pz,r ptz Y(t -2)

v(t-r) (0. r46)

hence transforming the derivation of the GPC algorithm into a straightforward problem

involving matrix algebra.

ln general, eq. (0.146) can be express as

f)



where the vector of predicted outputs is given by

9,:lj,(t +dlt),y(t +d +tlt),...,i,1t + Holt)J, (0.148)

and the vector of known contributions to i, which forms the free response of the system

(Maciejowski,2002), assuming zero incremental controls is given by

Po@-') (co@')- so,o)u

The Toeplitzlower triangular matrix G is defined as

i : f +Gu

G :

9 n 0 0
s ' s ^ 0o t  O U

; : : :

( t nEa^-a 86--6-r &

u:lfui(t),Au(t +l),. ..,Nt(t + Ho -d)lr .

The cost function J""" canbe expressed in the vector form as

J cpc : (V -rX(V - r) +ur )t,

where the vector of future set points (or reference signal) is defined as

r : lr(t + d),r(t + d +7),. . ",r(t + H 
")]r 

.

(0.r47)

(0.150)

(0 .151)

(0.1s2)

(0.1s3)

where the leading 7 subscripts on the elements in G are omitted, since the diagonal (main

and minor) elements are the same and not dependent on 7. The vector of control actions.

which is yet to be determined is given by

The next step of the derivation of the GPC algorithm is to differentiate the cost function eq.

(0.152) with respect to the vector of future incremental controls. i.e.



A. f ^^^  [  . a  I  13  f r
#:l(i- ') '*(v-r) | *l *tv-.) | (f -rlorr L du'- 'J 

Lau'" 
') \ ' /  ^ ' '

f  a  ̂ 1 ,  l a  _ 1 ,+lu, l .Lul +l! .a, |  .zu
L o u J L d u j

: 
[{v -.)'c]' + [c]' (v - r) (0. 154)

F - T
,  T  -  l t  f  1 l+lu'hl +[r] '  Zu

:2Gr (9,-r)+2.Lu

and substituting eq. (0.147) for the vector of predicted outputs i leads to

q# :2Gr (f+ Gu -r) +2.1uor (0.155)
: 2Gr (f _ r) + 2(GrG + 2r)u,

where I denotes an identity matrix of appropriate dimension. (In the case of H" = Hp it is of

dimension (Ho +l-d)x(Ho +I-d).) The minimisation procedure is accomptished by

A I
setting ry:0, hence

otr

cz(r-r;  +(GrG+.1I)u:0. (0.1s6)

Rearranging the expression eq. (0.156) to solve for vector u leads to the GpC algorithm

,r : [c.c + arf' G, [, -f ] , (0. I 57)

where only the first term of the vector u is applied to the plant,hence

u( t ) :u( t - t )+M(t ) .  (0 .158)

Throughout the derivation of the GPC algorithm the control horizon has been set such

that H":Ho. However, theuse of H"!Ho iscommoninpractice, whichdecreases the

computational load. The control horizon is relatively simply implemented by reducing the

dimension of the lower triangular matrix G by considering only the frst H" columns of G

and the dimension of u is then H"x1. The corresponcling weighting matrix ZI is also

required to be suitably truncated. The matrix inversion in eq. (0.157) for the special case of



H":1, reduces to the division by a scalar, which is often used in practice due to ease of

computation.

Choice of the Control and Prediction Horizons

The choice of the control and prediction horizons H" and, Ho is a crucial issue when

implementing the GPC algorithm. The horizons act as tuning or design parameters and arc

application specific. The choice of these is rather dilficult and only a basic introduction is

stated here. A detailed discussion of choosing the horizons and the cost weighting parameter

)' canbe found in (Clarke and Mohtadi, 1989; Clarke, 1996). The prediction horizon should

be large enough to incorporate the delay and transients of the system plus any possible NMp

response' It is suggested that the prediction horizon should incorporate the rise time of the

plarft, in order to encompass the transient effects of the plant.

Numerical Study: GPC

Consider an ARX model structure having flo :2, flt :l and d = I given by

y(t):Lsy(t-I)-0.7y(t-2)+0.7u(t -t)+0.tu(t-2)+e(t). (0.15e)

To illustrate the calculation of the 1@-') and G1(4-') polynomials the first prediction for

7 : I is performed. Utilising the predictor eq. (0.141) the polynomial pr(q-t) for

flo: fra -l:2 is then

4@-'): Pt,o* Ptte-t * pr.rq-' , (0. r 60)

where the individual coefficients pr, i =0 .. .2 , are computed utilising eq. (0.14a) and eq.

(0.136), hence



Pr,o : Pot * (ao - 4) Pop : 0 + (1 - ar)l : -d,,

P tJ :  Po ,z+ (4 -az )Po ,o :0+ (a r -a r ) l :  - d2 ,  (0 .161 )

Pr,z : Pot t (az - %) Po,o : 0 + (a, - 0)l : -dr.

Utilisng eq. (0.143) the Gr(qt) polynomial is computed as

Gr:bo+4q-' .  (0.162)

The predicted output at time (f +1) is then

)(t +Ilt): -4y(t)-dry(t -t)-dry(t _2)+boNt(t)+brNt(t _t) , (0.163)

which is exactly the same solution as in eq. (0.138). Following the same procedure the

prediction for 7: 2 and j:3 canbe computed.

The simulation setup, as previously, involves the open-loop operation during the time

interval t : (I,25) and closed-loop operation with the GPC controller eq. (0.157) during the

time interval t:(25,100) . The reference signal switches between *5 units with a period of

25 samples. The perfofinance criteria are the same as used previously, see eq. (0.79) and eq.

(0.80) . The noise variance is assumed tobe fi:0.5 and the start of the performance

evaluation is taken to be /o :30. The horizons are chosen as Ho:3 and H" :2 and the

cost weighting parameter ),:0.1.

The results of the simulation are shown in Figure 4. The performance in terms of the

MSE and MSC criteria are lu[SE:0.77 and WC:3.15, respectively, which in comparison

to the MV performance, is a superior result. Note that the first change of the system output

starts before the actual reference signal changes. Indeed this is one of the advantages of GPC

over alternative conventional control strateqies.



Figure 4. simulation of the Gpc controllerfor 7 =(1,25) in the open-loop setting
andfor 7 =(25,100) in the closed-loop setting.
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A BILINEAR APPROACH TO STC FOR NONLINEAR INDUSTRIAL SYSTEMS

Recognitionthatreal-world nonlinear systems exhibit different behaviour over the

operating range, and locally linearised models are valid only for small regions about a single

operating point, has prompted the desire to extend the STC concept to encompass a wider

range of nonlinear systems. Since bilinear systems represent a small, but important subset of

nonlinear systems within which linear systems coexist as a special subclass, attention is

focused here on extensions of STC for bilinear systems. A diagrammatic representation of

linear, bilinear and nonlinear systems is shown in Figure 5. Indeed many real-world processes

can be more appropriately described using bilinear models, and a good summary canbe

found in (Mohler, 1970; Bruni et al., 1974; Espana and Landau , 1978;Figalli et a1.,1984).

Bilinear systems are characterised by linear behaviour in both state and control when

considered separately, with the nonlinearity arising as a product of system state and control

Output signal



(Mohler, L973)- These processes may be found in areas such as engineering, ecology,

medicine and socioeconomics. Thus the adoption of bilinear models, hence the development

of bilinear model-based control, represents a significant step towards dealing with practical

real-world systems.

Based on the above observations coupled with the potential advantages of improved

control, e'g. improved efficiency, reduced wastage, increased profitability and improved

product quality, the need to develop bilinear model-based control strategies is justified.

Indeed, this has formed the topic of much research, with potential benefits, in practical

applications, see (Burnham,1997; Goodhart,l99l; Disdell, I995;Dunoyer, 1996; Minihan,

200I; Ziemian, 2002; Martineau, 2004) . This concept of adoption of the bilinear model-based

approach is demonstrated by extending the linear GPC scheme to the bilinear case. The use

of bilinear GPC (BGPC) increases the operational range of the controller over the use of the

linear model-based GPC when applied to systems for which a bilinear model is more

appropriate. A general single-input single-output bilinear system can be modelled using a

nonlinear ARMAX (NARMAX) model representation, i.e.

y(t) =[-o,y(, - i1 +fu,u(t - d - i)
i=l t=0

*L\r,,,y(t -,i-d)u(t -i- i -d +1)+ {(t),
i=0 j=l

where the a, and b, are assumed to correspond to the linear ARMAX model eq. (0.1) with

the r7r,, being the discrete bilinear coefficients which are required to be identified either on-

line or off-line along with the a, and b, (Dunoyer,1996).

(0.164)



Figure 5' Diagrammatic repres,entation of bilinear systems as a subset of the widerclass of nonlinear systerns, and linear syitems as a iubclass of bilinear systems.

BILINEAR GPC

The predictive control law is based on a bilinear model eq. (0.164), which for the

pulpose of obtaining an explicit solution to the multi stage quadratic cost function eq. (0.132)

is interpreted as a time-step quasi-linear model such that the bilinear coefficients are

combined with either the a, or b, parameters. The combined parameters are either given by

ai!) = a, -u(t -d -i)r1Q-\ (0.16s)

or bv

b,(t1= b,+ y(t -i)rlQ). (0.166)

For example, by recombining the bilinear terms with the a, coefficinets the bilinear model

eq' (0.164) can be expressed as input dependent and potentially time varying linear model,

i .e .

y(t) =\-u,r(, -4*fn,uQ -d -i).
i=r t=0

The decision to accommodate the bilinearity with the a, or 6, coefficients depends on a

particular control situation and, to some extent, user choice. Since the vector of future

incremental control actions eq. (0.151) is computed at each time instance this knowledge can

be utilised during the cost function minimisation. For example, one can obtain the predictions

(0.167)

Bilinear svstems



of the future outputs by utilising the combination approach of eq. (0.165) with the most

recent solution for the vector of incremental controls u. Subsequently it may be

advantageous to compute the next vector of incremental controls utilisng the combination

approach of eq. (0.166). This latter approach of cyclic recombination of the bilinear terms has

been shown to give rise to an improved overall performance (Dunoyer, 1996).

As a consequence of utilising the bilinear (bilinearised) model for the purpose of

predicting the system output the prediction error decreases, hence the BGPC is more effective

over the standard GPC. The BGPC algorithm retains the same structure as in the case of GpC

eq. (0.157). However, since the d,(t) or 6,1t) coefficients are potentially time varying and

input or output dependent, respectively, the Toeplitz lower hiangular matrix G and vector

f , which comprise of these coefficients, are requirecl to be updated at eachtime step. Note

that some of the complexity can be overcome by taking advantage of the common factors in

the case when H" =l (Vinsonneau,2007).In general, however, the use of the BGPC leads to

a higher computational load over the standard GpC.

Numerical Study: GPC, Self-tuning GPC, and BGpC

The system (plant) is represented by a second order single-input single-output ARX

model having additional Hammerstein and bilinear nonlinearities. Similar structured

nonlinear models have been assumed previously for replicating the characteristics of high

temperature industrial furnaces, see (Goodhart et aI.,1994; Dunoyer et al., 1997; Martineau et

aL,2004), or for representing the thermod;mamic processes within a heating ventilation and

air conditioning system, see (Larkowski et a1.,2009; Zajic et a1.,2009). The nonlinear system

has been chosen to show that bilinear controllers can be used to control nonlinear systems

without using the adaptive control approach, leading to the use of less complex and robust

controllers. The system takes the form


